inyectiva
En matemáticas, una función f \colon X \to Y \, es inyectiva si a cada valor del conjunto A\, (dominio) le corresponde un valor distinto en el conjunto B\, (imagen) de f\,. Es decir, a cada elemento del conjunto A le corresponde un solo valor tal que, en el conjunto A no puede haber dos o más elementos que tengan la misma imagen.
Así, por ejemplo, la función de números reales f:\mathbb{R}\to\mathbb{R}, dada por f(x)=x^2\, no es inyectiva, puesto que el valor 4 puede obtenerse como f(2) y f( − 2). Pero si el dominio se restringe a los números positivos, obteniendo así una nueva función g:\mathbb{R}^+\to\mathbb{R}^+ entonces sí se obtiene una función inyectiva.
biyectiva
Sea f una función de A en B , f es una función biyectiva , si y sólo si f es sobreyectiva e inyectiva a la vez .
Si cada elemento de B es imagen de un solo elemento de A, diremos que la función es Inyectiva. En cambio, la función es Sobreyectiva cuando todo elemento de B es imagen de, al menos, un elemento de A. Cuando se cumplen simultáneamente las dos condiciones tenemos una función BIYECTIVA.
Ejemplo:
A = { a , e , i , o , u }
B = { 1 , 3 , 5 , 7 , 9 }
f = { ( a , 5 ) , ( e , 1 ) , ( i , 9 ) , ( o , 3 ) , ( u , 7 ) }
Teorema:
Si f es biyectiva , entonces su inversa f - 1 es también una función y además biyectiva.